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ABSTRACT

Consider the model of multiple superimposed exponential signals in

additive Gaussian noise / - ') / t

Yji) .t+ t t = O,l,...,n-l, j = 1,1,N

where N is fixed and n i, x. = exp(v1.i), wi e [0,2n), i =

Wig sii are unknown parameters and p is known. Further, ej(t) = ej1 (t)

+ vn-ej 2 (t), and ej,(t), ej2(t), t = 0,1,2,..., j = l,...,N, are mutually

independent and identically distributed real random variables with a

common distribution N(O,a2/2), 0 < a2 < o, a2 is unknown. It is shown

that if wi # wj when i # j and 1N=lISijl > 0 for i = l,...,p, then the

Maximum Likelihood estimate (AI 1 p) is strongly consistent. More-

over, it is shown that Xi converges to X with an exponential rate.
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1. INTRODUCTION

Consider the following model of multiple superimposed exponential

signals in additive Gaussian noise

Y (t) = s + ej(t), t = O,l,...,n-l, j = l,...,N (1)

where Xi = exp(1wi), i = l,...,p, wi e [0,2r), wig sij are unknowns

and p is assumed to be known. Further, ej(t) = el(t) + 41ej2(t) and

ej1 (t), ej2(t), t = 0,1.2,..., j = 1,...,N, are mutually independent

and identically distributed (iid.) real random variables with a common

distribution N(O,o2/2), 0 <a 2 < c, a 2 is unknown.
ia.

Quite a number of papers appeared dealing with the estimation of

parameters in this model, which is important in problems related to sig-

nal processing and time series analysis. When 1, ..., Xp are known,

(1) reduces to an ordinary linear regression model in which s ij's are

usually estimated by the Least Squares method. Therefore a conceivable

way to handle the estimation problem in (1) is as follows: Obtain
A, A

by some way an estimator (X 1 g p) of (X1, ..., Xp). Substitute

i for Xi in (1), consider the Xi's as known constants and use the LS

method to yield an estimate for s ij. This seemingly reasonable procedure

has the drawback that the estimate of sij thus obtained is usually non-

*consistent, as indicated in [1].

For the more important problem of estimating A1, ... , several

methods have been proposed in the literature. Bresler and Macovski de-

rived in [2] the LS criterion in the form of minimizing some function

not involving sij. Under the normality assumption here, it is the same

as the Maximum Likelihood criterion. Their method consists in introduc-
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ing a polynomial b0 + blz + ... + b Zp having A X as roots,

thus reducing the problem of estimating XI1 ... , p to that of estimat-p

ing the coefficient vector b - (bO , ..., bp) . Specifically, define

the set

B b: Ib1K = 1, b .O} (2)

and the (n-p)xn matrix

b0  bl , . bp 0

b . . bp

B n(b) = . .. , (3)

0 b0  b I . b

Dn(b) = B (b)B*(b),

where Bn(b) denotes the conjugate transpose of B (b). Also,

y(J.n) = (Y(O), Yj(1), I Yj(n-l))' j 1, N

N1n y*(jn)Bn(.b)o(b)Bn(b)Y(Jn) (4)

Bresler and Macovski showed in [2] that the vector b = b(n) minimizing

Qn on B, that is to say,

An (Yb) = mi Qn (Yb) (5)
beB

is the ML estimate of b(0) = (b(O) * (0)), B, where

b(O) + b(O)z +... + bO)zp . O, (6)
0 1p

.. K~I
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has roots A , "" p Bresler and Macovski suggested an iterative

process to compute b. No proof is given for the convergence of this

process. Nor is one guaranteed that when the process does converge, the

limit is indeed an overall minimizing point of Q n, and not a local

minimum.

Theoretically it is interesting to give a close study of the statis-

tical properties of the ML estimate b. For, although the ML method

usually gives statistical procedures with satisfactory performance, in

particular when the normality assumption is in force as here, the com-

plexity of the model (from the point of view that the unknowns of the

model appear in rather complicated expressions) makes it unclear how good

the ML estimate is under the present situation. As mentioned earlier,

under model (1) the ML estimate of is not even consistent. So also

the good performance of the ML estimate of (X1, " X' p ) cannot be taken

for granted.

This paper is devoted to a basic problem of the asymptotic theory of

the ML estimate of (X1  ... Xp) - its consistency. On reducing the

problem to the estimation of b(O) as described earlier, it is seen that

the problem is equivalent to the consistency of the ML estimate b = t(n)

of b(0). Our main result is the following theorem:

THEOREM 1. Suppose the following conditions are satisfied:

1. 1Xll = ... = pI = 1, i  . for i # j.

2. For each k = l,...,p, j=1ISkjI > 0.

3. {e.(t)} satisfies the conditions elaborated at the beginning

of this section.

Then for arbitrarily given c > 0, there exists constant c > 0 inde-

•.
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pendent of n such that

P(Ijb(n) - 1 > < Ce (7)

for n large, where 112 l denotes the Euclidean length of the vector a.

(7) entails, in view of the well-known Borel-Cantelli lemma, that

b (n) is a strongly consistent estimate of bO



2. LEMMAS

Some facts concerning mainly with the matrix Dn(b) will be needed

in proving the theorem.. For convenience we shall write

m = n - p. (8)

LEMMA 1. For any b e B, we have
> m

D (b . I (9)

2
Dn(b) < 2 P(P+I)(p+l)Pn3(p+I)i

where I is the identity matrix of order m.

Proof. (9) follows from tr(Bn(b)Bn(b)) p + 1.

To prove (10), we proceed to find the minimum

*D

H min min u (b)u (1)
beB ueA - (

where A is the set {u = CuO, ... , um_ 1): iUof1 i 2  11.

Introduce the (p+l)xn matrix U*(u):

-- " 1 m-1"0
UU

U0( : u°°  m-l 0""Um

1 u u a " UmSm-1

One sees easily that
uBn (b) = bU*(u).
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Hence,

u*D (b)u = b'V(u)F, V(u) U*(u)U(u)
a nl -

and

H min min b'V(u)F. (2

ueA beB-

Now we prove that for any ue A, we have

det V(u) , 2P(P+l)n -3(p+l) 2 (13)

Since (13) is true when p = 0, suppose that p > 1 and n > p 1 1>2.

Define

f (x) -u + -u x + +. -u x ~m-1

and w = exp(vCT-- 27/n), sl {w, w 2 b. Wn} There exist at least p + 1

elements W,, .. W~ in 2, such that

IfnWk) -P1, k = l,2,...,p+l. (14)

Indeed, supposing in the contrary that

k6 ' ifn(d < n-(P+l), k = l,...,n-p C-rn), (15)

then, on putting

A = (1l, 2, 9 9m A I {m+l , n1.,

and using Lagrange interpolation formula, we have

fn (e M ~~ nj (e - -k ~ 'k (16)
I keA-{j} /keA-fj I ('j
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For fixed J e A, we have
ftn

I (Oj- Ok) n(j =d i = n

keA-{J} keA x~ok x-1 j "

Hence,

Ike R J)1 j - k) I < Il 11e (Oj- Ok) <_2P/no (17)

-. keA-{j } ,keA ~ <~n.(7

Two cases are possible: First,

I Ie-arg Oki ._> Z/n (maod2w), k e AIu{J).

In this case we have

: p+1

11 (e YT k - sin1j

keAlu{J} -

Since sin'->-2 =2 when n > 2, we have

.n n- n n n

nn

*4'-x

~~~~~II (e '/z ' 1-  - ev T n  I ( ' I @ - k
IkeA-{J} -1 IkeA1u{J} -~ k -

44 -p-i1+

<_ Isin nI. c 2-P p l  (18)

Second,

ae-arg j < 1/n('mod 2 7r), for some t e AIU{J}.

(Note that there are at most one such i.) In this case, noticing that

Ie-arg OkL > f/n (mod 27) for any k e AIU{J}, k z t, and that

le ne /Ie V i . 011 < n, we have

!"
* * 4 ~~ ~ ~ .
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Ik (e" -# k )  " e'Tne -  (e (-.1e
keA-(j) I I keA1uu{ J (e

kA(e / T  .#k)

IkeAiu(J), kft

< n(sin L) _< 2PnP (19)

From (15)-(19), we obtain

jf n(ere)I < nn-(P+)(2Pn-l)2 -PnP+ l  I, for all o e [-rT)

Therefore,

j 12 I fn(ey-Te)I2 de < 1,
'j-n J r -1f

contradicting the fact that - 1. This proves (14).

Now put (remember that w e/T 2nn

'4 " I 1 1 1

W,, 12 n-1

2 4 2(n-1)

p4. G
(nxn)

W n-I 2(n-1) (n-1) 2
* * * d

4.
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f (w) *- * f ( l

((p+J'xn)=

f (1) wpf (W) wpn~ fl-i)

wj f (w1 ) wi2fn(w 2) - - wp+if n(wp+i)

I

((p+)x (p+j1 I

p~f (w) wpf (w) *p f ~i~ (w'~

Then

U*(i,)U(u) = U*(u)GG*U(u) =IFF* > 1F Fie
- n. n -n I

Hence.

det V(u) -det(U*(U)U(U ) n(+ ldtFJ

> -(P+l)n-2(p+1) 2(2 PPI si 2

Sn

>~~~~~~~ ~ ~ ~ n-P+.*2p+) 2 
-.

) PPln-(+
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and (13) is proved.

Denote by L(u) and k(u) the largest and smallest eigenvalue of V(u),

respectively. Obviously we have L(u) p + 1, for any u e A, From this

and (13), we have

£(u) > C n3(p+), Cp =2P(P+)(p+)'

From this and (12), we obtain

i H > C pn"3 (p + 1 ) 2 (0
_ .n (20)

Now denote by d n(b) the smallest eigenvalue of Dn(b). By (11),

(20), we see that dn (b) > Cpn3(p+l) for any b e B, which amounts to

A the same thing as (10). Lemma 1 is proved.

LEMMA 2. For arbitrarily given h > 0, there exists h1 > 0 such that
ft -h 1

for any b e B, ; e B with lb- bi < n , we have

-ID - Dnl(b)I < nh, n > n (21)

n0(b n 0

for some n0 not depending on b, b. Where for any vector or matrix C,

ICI denotes the maximum module of the elements of C.

Proof. Since

Dnl_ 1 Dnlb 1 Dnl_ 1 n Dn(;)) D n l (0) ,

(21) follows easily from Lemma 1.

In the following we use xn (6) to denote the noncentral Chi-square

distribution with degree of freedom n and noncentrality parameter 6.
2 2 (0) will be abbreviated to xn .
Xn aea 0Xn
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LEMMA 3. Suppose that {Cn} is a sequence of random variables,

- is distributed as X 2n(6 ), and there exists positive constantsn n n
S< n2 such that

T'l r2
nln < 62< ri2 n, n =1,2,.• - n -

Then we can find positive constant c independent of n, such that

P( n/n > l + ni/2) > 1 - e cn, n =1,2,_ (22)

Proof. We can find random variables C x2 , Z - N(O,l), such thatn

~is distributed as E + 26nZ + 6;2. Choose E e (0 rn 112 /8), we haven n n " ( ' 'l

F 2 2 -cln
.]P(IZI > ev') < 2 - exp(- E ) < e- ~

/2; 2

. for cI 
=  2/2, n > 2/(TrE 2). But when IZI < EAi, we have

126 nZI < 2v92 n <n n1n/4.

Therefore,

P(n > I + nl/2) > P( /n > 1 + nl/ 4 ) - P(IZI > E/)

-> l -P(IJ/n -1I > n1/4) -e , n >2/ 2 . (23)

Since is the sum of iid. variables X2, ..., X2, with X -N(0,1), in

view of the fact that has moment generating function in some neigh-

borhood of zero, it is well-known ([3], p.288) that there exists a con-

stant c2 > 0 such that

-c2 n
P( i/n- 11 > n1/4) < e for n > nI.

From this and (23), we see that (22) holds for c = min(c l,c2), when

n > max(2/E2 , n1). Replacing c by some smaller quantity, we can make

(22) true for all n.
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3. PROOF OF THE THEOREM

Introduce the following notations:

!. (s ) W(b) =b 0 + bl xk + .+ bp

Wj - jk 0b1) p k'

1 S . 1

1. I  2  x~p

A n

n - xn .-1x. . p 1

* N
2 B*b,-1

6 (n,b) Y SjA* n u (b)Bn(b)AnS .~j = -

For simplicity of writing and without losing generality, suppose

that a2 = 1. Then from the assumptions imposed on {ej(t)}, we have

Qn(Y,b) - X2Nm( 2 . •

Remember that m = n - p. From (9) and the fact that Ix 1 x21 = 

Ix I = 1, we have

6 2 (nb) > Bnb)" ' 2 I T 1 0x w (b)skj 2

-p+l .- rin'- +1 1 k k -/j

j Ij= t= k=Okk k

1 N m-l P1 k 7  (b)12 12
(j=1 t=O k=l k 2kj

P N rn-i
+ I Y Y (x UYv)tw (b)w (b)s .s (24)

u#v j1l t=O v. uj

By assumption

r ** . - -if
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N 2
a= min{ I Is j k l,...,p} > 0.

Hence,

N rn-i P2 2> p2

j1tOk1Iwk (b)IIs kjI > (n- p)I 1Iwk (b 2  (25)

Put

s = max{Is kjI: 1 < k < p, 1 < j }

X =min{Ilx XI: 1 < i < j < p}.

We have X > 0 since by assumption X. x when i / j. Thus

rn-m 1 tj 2 n >p+l1, u V.

= u v -l '

Therefore, noticing that Iwk (b)I < Ap -+, we have

p N rn-i
u T Av )tw u (bv ()s u vjj < 2p( + )Ns (1 - X)1  (26)

uiv j=l t=O

Define the set

B = :b = (b , bp )- e B, Ib-b )12>

al k1lk k

Since {X,..,x I is the set of alroots of b(0  + b(1 Z + *.+

pb(0 )ZP = 0, it is easily seen that

inf ) 7 w k(b)jd b e B E > 0. (27)

".Summning up (24)-(27), we see that there exists constants nj> 0',n > 0
depending only on c, such that

nn < 6 2(n,b) < ni2n, b e B E (28)



15

To simplify the wording, in the sequel the symbol c will be used

to denote any positive constant not depending on b, n, which may assume

different values on each of its appearances, and the phrase "for n large,

means that "for n larger than some n0 independent of e B". Since

Q (Y,b) - X2Nm6 2(n,b)) from (28) and Lemma 3, we obtain

P Qn(Y,b)/nN > 1 + nil 2) > I - e cn .  (29)

Choose hI > 0 according to some h > 0 as in Lemma 2. The value of h will
2ph1

be specified later. Choose a subset Bn of B with no more than n

points, such that for each be B there exists be B such that
- - cn

b- I < n . From (44), for n large, we have

mmQ -2ph I-cn -cnkP(min b)/nN > 1 + nl/2 >1- n e- > 1- e-  (30)be e n( . -) I•
Now choose arbitrarily b e B . Find b e B such that Ib-b I < n. - . nfl - "

*Consider

J = n (Y,b) - Qn(Y,;)I (31)

Abbreviating B (b) B n(b) etc. to B , B n etc., we have

N
. -' -1B n Y*jn' - n)

V..-. J ~ YUj(j,n)BUD Y'jn' - Yjnn) DY(j n)
j- - -

< I '(Jn)B*(DI'Dnl)BnY(Jin)

- + I *(jn)BnDnl Y(Jn)- n( n )BnD Y(j,n)
j=1 n n n. nn n.

-I + J2 " (32)

.- .
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By (21), we have

h1 < N~~ I~~ j n 2 h N n-1

j~l XjJ=1 t=O

Put s=maxfli! 1Is1Ij: j =1.,).Since I..,I = Xj I = ,we
p

have

p
I ~sj)j S j

Hence,

-h 1 ) 2N n -I ( p + J e 0 1 24 ~ ~: <n 2nN(p+1) + 2~ 1 =(~)Iit

_Cnh- +.Cn-h I nI le.(t0I (33)
J=1 t=o *

Introduce the event

By (33), we have

En C ,. Cn- h}. (34)

For J 2 9 we have

N

+ ~I y*(J~n)B n fI('nB nB)(J.n)I .J 3 + J4V (35)

By the extended Schwarz inequality,
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J2 < N N Y*(Jn)B*D-lBY(J.n)Y*(J.n)(g*B ) 1 (,-B, )Y(Jn). (36)

3 n n .nn n n n- n(6. j=1

Write w = 3(p+1)2 + 1. By (10), (36), we have for n large,
N

J1 < N N n2WIIBY(J,n) 2( -B )(J,n) 2
j=1 N , I n n Iin

c 2w N IBYin! 2 N2<Nn w .1 JIBn~~~~ Z 11('n -B n)y(j n)I .  (37)

J=--) j=

In the course of proving (33), we have shown that

N 2 N n-I 2
SJlIBn('n)II < Cn t C I Z Iej(t)I . (38)

j= -- j= t=0

Further, in view of lin-Bnl < n h , we have

N -2 1  2 N Nn- 2111 j! ( n -Bn )Y(j n) 112 _ n (p+ 1)l "= t=O I(0)

J=1 j=1 t 0O
-2hl1+1 -2hI N n-l2
< +Cn + Cn le(t)12. (39)

J=1 t=O

From (37)-(39), we see that

En a [J3 < Cn -(h-w-) (40)

Likewise, we obtain
..J4  c(hlW.

En afJ4 < Cn  (41)

Summing up (31), (33), (35), (40) and (41), we obtain

IQEn --(Y b)-Q(Y Cnh+l 1{(n(~b_ QnY,)) <+ Cn }.(42)
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Now we choose h =1. Choose h Icorresponding to this h according to

Lemmna 2 such that hl L w + 1. For this choice of h and his from (30)

and (42), we get for n large

P(mi n Qn(Y b)/(nN) L 1 + nl/2) > 1 - cn -(1 - I'(E n))e (43)

On he the had, inc Q (o () 2
* Onthe the han, sice n ( b) x2nN- we have for n large,

P(Qn(Y-P () _1 1 + nl/4)>1I - ecn (44)

N,in-1 e(0.2 _2Likewise, since Ij t x2nNS we have for n large,

PEn 1 -ecn. '(45)

Summing up (43)-(45), we obtain for n large,

Pmi n n(YbP) > Qn (Y i <e-

which entails (7), and the theorem is proved.

911
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